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ON AN INTEGER’S INFINITARY DIVISORS

GRAEME L. COHEN

ABSTRACT. The notions of unitary divisor and biunitary divisor are extended
in a natural fashion to give k-ary divisors, for any natural number k. We
show that we may sensibly allow k to increase indefinitely, and this leads to
infinitary divisors. The infinitary divisors of an integer are described in full,
and applications to the obvious analogues of the classical perfect and amicable
numbers and aliquot sequences are given.

1. INTRODUCTION

A divisor d of a natural number » is unitary if the greatest common divisor
of d and n/d is 1, and is biunitary if the greatest common unitary divisor of
d and n/d is 1. Unitary and biunitary divisors have been studied by several
authors, often in terms analogous to those of the classical perfect and amicable
numbers. Among these writers are E. Cohen [2], Hagis [4-6], Lal [7], Subbarao
and Warren [9], Suryanarayana [11] (see also [12]) and Wall [15, 16].

It is easily seen that, for a prime power p’, the unitary divisors are 1 and
p”, and the biunitary divisors are all the powers 1, p, p2 ,...,p , except for
p"/* when y is even.

There is no difficulty in extending this notion. Thus we may call d a tri-
unitary divisor of n if the greatest common biunitary divisor of d and n/d
is 1. We soon calculate that the triunitary divisors of p” are 1 and p’, except
if y =3 or 6; those of p3 are 1, p, pz, and p3;and those of p6 are 1, pz,
p4 and p6 . In this way, we may also define 4-ary divisors, 5-ary divisors, and
so on. We shall speak in general of k-ary divisors. The lack of a pattern in the
list of k-ary divisors of p” (for small values of k, not 1 or 2, and y) would
have inhibited a study of these. But as we increase k, in fact a very striking
pattern begins to appear.

Figure 1 shows the k-ary divisors of p” for k=1,2,...,6,and 0 <y <
30. The asterisks indicate those values of x for which p* is a k-ary divisor
of p”. Figure 2 is the same for kK = 19 and 20, and 0 < y < 80. We notice
that for small values of y, to be characterized later, the k-ary divisors remain
fixed. The pattern for large y is also fixed, and depends on whether k is odd or
even. Finally, in Figure 3, we show the 100-ary divisors of p* for 0 <y < 120.
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The pattern of divisors for the small values of y would now appear to be
established, whatever the value of k, and it is these which we shall be calling
infinitary divisors. Note that the figure shows some collapse in the pattern for
y > 100. The last (decimal) digit of x, where p* is a 100-ary divisor of p”,
is shown in this figure, so that the actual divisors may be read off; this will be
useful later.

The pattern indicated by Figure 3 has the distinct appearance of a fractal. It
may be compared with Sierpiniski’s “arrowhead” or “gasket” (Mandelbrot [8]).
See also Sved [13], where the same fractal appears, also in a number-theoretic
setting.

The pictures would appear to be worth a thousand words. The first aim of
this paper is to describe this unexpected pattern in terms of our definition of
k-ary divisors.

2. INFINITARY DIVISORS OF PRIME POWERS

In the following, all letters denote nonnegative integers, with p reserved for
an arbitrary prime. To put the above on a formal footing, we begin with

Definition 1. A divisor d of an integer n is called a 1-ary divisor of » if the
greatest common divisor of d and n/d is 1; and d is called a k-ary divisor
of n (for k > 2) if the greatest common (k — 1)-ary divisor of d and n/d
is 1.

For convenience, we shall call d a O-ary divisor of n if d|n. We write
d|,n to indicate that d is a k-ary divisor of », and (I, m), for the greatest
common k-ary divisor of / and m . It has become common to write d|/n in
place of d|n.

It should be mentioned that different generalizations of unitary divisor have
been given by Suryanarayana [10] (who also used the term “k-ary divisor”) and
Alladi [1].

The following observations are immediate and will be used later without
special reference.

(i) Forany n, 1|.n.
(ii) p*|,p" means (p*,p" "), _, =1.
(iii) p*|,p” if and only if p* |, p”.
The permanency of the pattern for the early k-ary divisors of p”, described
in §1, is accounted for in
Theorem 1. For k >y —1>0, p*|,p” ifand only if px|y_1py.

Proof. The proof is by induction. The result is true when y = 1, since 1|, p
for all k. We suppose now that it is true for y <Y — 1, and consider y =Y.
For k = Y — 1, there is nothing to prove, so we suppose also that the result is
true for Y — 1<k <K -1, and consider kK =K.

Suppose p”| pr. We must show that p*|,_, pY . If this is not true, then
1<x<Y-1and (p°, py_x)y_2 =p®, a>1. Since p°|,_,p", the induc-
tion hypotheses show first that p®|__,p", and then that p®|,_ p". Similarly,
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paly_zpy_x and Y -x <Y -1, so0 pa|Y_x_1pY_x, and then palK_le_x
Hence (px,py_X)K_1 > p® > 1, contradicting px1KpY. Hence, px|y_1py , as
required.

Suppose next that p*|,_| p" . We must show that p*| KpY. If this is not
true, then x < Y — 1 and (px,pY_X)K_l =p’, b > 1. Then pb|K_1pX,

and the induction hypotheses give pb|x_l p* and then pb|Y_2px. Similarly,
pbly_zpy_x , and we are contradicting p*|,_, pY . The proof is complete. O

We are justified now in making the following

Definition 2. We call p* an infinitary divisor of p” (y > 0) if p*[,_ p". We
also define 1 to be an infinitary divisor of 1.

We write p*|_p” when p” is an infinitary divisor of p” (and p*t_p"
when it is not), and (p', p’), for the greatest common infinitary divisor of p’
and p’.

Theorem 2. We have p*| _p’ if and only if (p*,p"™ ") =1.

Proof. This is trivially true if y = 0 or 1, and generally if x =0 or x =y,
so assume now that y > 2 and that 1 < x<y—-1. Then x- 1<y -2 and
y—-x—-1<y-2.1f p*+_p", then pXJ(y_lpy, SO (px,py_x)y_:,_ =p’>1.
Then p“ly_sz, so that, by Theorem 1, p“| _ p"; similarly, p“|y_x_1py_x.
But then p“|_p”* and p®|_p" ",so (p*, p" ") =p” > 1. For the converse,

we assume that (p*, p" ") = p® > 1 and essentially reverse the preceding
argument. O

The theorems and corollaries which follow will lead to the complete charac-
terization of the infinitary divisors of p”. The pattern of Figure 3 (excluding
the top nineteen lines) will thus be fully described, although the characterization
we end with, in Theorem 8, will lead to a more efficient means of constructing
tables of infinitary divisors.

Theorem 3. We have p|_p* if and only if y is odd.

Proof. Using Definition 2, we have ploop1 and p¢t c>op2 . Also, using Theorem
2, we have, for y > 3,

1
)oo %

oo =P = ploop’_

pl.p = (0, 0"

p—2
<= (p,p

The result follows. 0O

Theorem 4. If y is even and p*|_p’, then x is even.
o0

Proof. Suppose x is odd. Then y — x is also odd and, using Theorem 3,
(»*, p’™"), = p. This contradicts the statement that p*|_p”. O

Theorem 5. We have p*|_p” if and only if pleoopzy )
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Proof. We use induction on y. The result is trivially true if y = 0. Suppose
the theorem is true for y < Y — 1, and consider y = Y. Clearly, we may
assume 1 <x<Y-1.

Suppose px|oopY ,but p™ ¢ oopzy . The latter implies that (p™*, pZY—ZX)oo =
p®, say, and, using Theorem 4, a is even and positive. Put a = 2b. Since

prloopzx and prloopZY_zx , the induction hypothesis implies that pb|oopx and

pb|°°py—x. Then (p”, py_)‘)oo > p’ > 1, contradicting the assumption that
oY

Plop -

Suppose next that proopy. Then (p*, pY_x)oo = p° > 1, from which,

by hypothesis, pzcloopzx and pzcloopzy_zx. It follows that pzxiroopzy. This
completes the proof for y =Y, and thus forall y. O

Theorem 6. If p*| p" and y is divisible by 2 for some j > 0, then x is
divisible by 2’ .

Proof. The result is trivial when j = 0. Suppose it is true when j = J, and

consider j=J+1. Put y=2"""4. By Theorem 4, x is even, say x = 2w .

w J+1 J . .
Then p*" loop2 | so that, by Theorem 5, p“’loop2 ¢ . Then, by the induction

hypothesis, w is divisible by 2’7, and the result follows. O

Corollary 1. The infinitary divisors of pza are 1 and pza.
Proof. This is immediate. O

Corollary 2. For 0 <k < 2 pzjt p21+k sfor 2 <k < 2+ pzl ,(oop2’+k.
Proof. The first statement follows from Corollary 1 since, for these k|,
(pzl , p/")oo = 1. The second statement follows from the first. O

oo

Theorem 7. We have pzjioopy ifand only if y=2" or 2’ +1 or 2’ +2 or ---
or 27! — 1 (mod 2/
Proof. We have

¥y Yy b1 -2
Pl = 0,0 =1 <= p t_p" (by Corollary 1)
2/ y—2/+1 2/ y_21+l
= (., p oo > 1 <= p7 | D (by Corollary 1)
2 p=2t
= .- = p | P ,

where / is chosen to be the largest integer such that y — 2’*'/ > 2/ Then
2/ <y—2""1 <2/ +2*"  and the result follows from Corollary 2. O

The remainder of the identification process for infinitary divisors is carried
out mainly in terms of the binary representations of the exponents on the prime
p. We write a binary representation in general fashion as ) g ’ 2’ ; the sum is
finite, j > 0, each ¢ ’ is 0 or 1, and trailing zeros are allowed where required.
A little reflection gives us the following alternative statement of Theorem 7.
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Theorem 7' . Let y = Eyjzj . Then p21|oopy if and only if y;=1.
Theorem 8. Let x = Eijj and y —x =3, zj2’ . Then

leoopy if and only if ij z;=0.
Proof. Suppose first that 3 x;z; # 0. Then x; = z, = 1 for some j, so
p”|.,p" and p¥| "™, by Theorem 7'. Hence (p*,p"™),, 2 p* 2 p, 50
Pt p .

For the converse, suppose p*+_p”, so that (p*,p"™)_ = p*, say, with
a>1. Put

_ J _ J _ J
a—ZaJ.Z , x—a—ZbJZ , y—x—a_z:cjz .
Since a > 1, we have a, =1 for some /. Since p®| _p", we have Yab; =0
(using the part of this theorem already proved) and it follows that b, = 0
and that x; = a; + b; for each j. Hence x; = 1. Similarly, Pl 0, so
> a;c, =0, fromwhich ¢, =0 and z; =a,+¢,;=1. Thus 3_x,z #0. O

y—

Corollary 3. The infinitary divisors of pza~1 areall p*, 0<x<2-1.
Proof. Taking y = 2% — 1 in Theorem 8, we see there that if x; = 0 or 1, then
z, = 1 or 0, respectively, and ijzj =0. O

In the next theorem, we prove a very pleasing and useful property, namely,
that infinitary divisors are transitive. This is not true of k-ary divisors in

general. For example, p|5p3 and p3|5p7 , but p+5p7.

Theorem 9. If p*| _p" and p"| _p®, then p*| p°.

Proof. The result is trivial if x = 0, so suppose x > 1. Write x = ZxJZj ,
y=xy2,y-x=xr2, z-y=3%52,and z—x =312 . Wemust
show that 3 x.7, = 0, given that } x;r, =0 and Zyjsj = 0. Consider any
particular value of j, say j = k, for which x, = 1. Since Exjrj =0, we
then have r, = 0 and Y, =X+, for each j,so y, = 1. Then s, =0. We
note that z—x=(z-y)+(y—x). If k=0, then ¢, =5,+7,=0.If k>0,
then ¢, =5, +r, unless s, =r, = 1 for some i < k. In that case, y, =0,
since Eyjsj =0, and we cannot have y, = x; +r,. Hence ¢, =5, +r, =0, s0
Xt = 0 for all j, and the proof is finished. O

a+l

Theorem 10. Suppose 2° < y < 2
24 x
p

Praoof, Assume p*|_p

if p*lp’”Y, then p*|_p* and
Y. o a x y x y=2°
P 3 U x<y—2" and p*| p", then p"| .p° " .

y—2° a+l

. Since 2% <y < 2°*', Theorem 7' implies that
P’ lp s s0 p’7? lop” > and so p*|_p”, by Theorem 9.
Now put x = ij2’ and y -2 —x = szzj. We have x <y —2° <

297 2% = 2% and 2° < 29+ x < 2°™' so 2% + x has the proper binary



ON AN INTEGER'’S INFINITARY DIVISORS 403

representation 2 + ZxJZJ . By Theorem 8, > x,z; =0, and so, by the same
2%4x y
loo?” -

For the second part, suppose p* ¢ _p’ ~ ,and let x and y —2° — x be as

before. Then x,=z;=0 for j > a and x, = z, = 1 for some k < a (by

theorem, p
y=2°

Theorem 8). But then y —x =2+ z ; 2’ and the right-hand side is a proper
binary representation; since x, = z, = 1, we have p* {_p”, as required. O

Theorem 11. If 2° < y < 2°*! and y — 2% < x < 2%, then ptr.

Proof. Since y—2* < x < 2%, we also have y —2° < y —x < 2°. Then, putting
X = 2x}2’ and y — x = szzf , We may assume in each sum that j<a-1.
Put also y = Zyjzj. If Xz, = 0 for all j, then yi=X+z; for all j, and

a+l1

it is impossible to have y, = 1, which we require since 2° <y <27 . Hence

x;=z,=1 for some j, implying, by Theorem 8, that p*+_p’. O

Theorems 10 and 11 imply the “arrowhead” of Figure 3. In particular, The-
orem 11 accounts for the large empty triangles.

We can use Theorem 10 to find the infinitary divisors of prime powers very
quickly (that is, in polynomial time). For example, the infinitary divisors of plso
are the infinitary divisors p* of p'>*7'?® ie. p**, and each p'****. Use Fig-
ure 3 for the infinitary divisors of p22 or calculate them from those of pz"'_16 ,
ie., p6. The infinitary divisors of p6 are p*~ for x =0, 2, 4, 6; so those of
p22 have x =0,2,4,6, 16, 18, 20, 22. Then the infinitary divisors of p'so
are p* for x = 0,2,4,6, 16, 18,20, 22, 128, 130, 132, 134, 144, 146,
148, 150.

The simplest means of constructing the Sierpiniski arrowhead is by means of
Pascal’s triangle, where only the parity of the binomial coefficients need be noted
(Sved [13]). This gives immediately the following unexpected characterization
of infinitary divisors.

Theorem 12. We have p*| _p’ if and only if (2) is odd.

3. INFINITARY DIVISORS OF INTEGERS

The simplest and quickest way to introduce infinitary divisors in general is
as follows.

Definition 3. Let d be a divisor of »n and write n = H;.:l pjy.’, for distinct

primes p,,p,,...,p,, and d = H;;lp;’ (where 0 < x <y, j=1,
2,...,t). Then d is an infinitary divisor of » if p;’|oopjy.’ for each j =
1,2,...,¢.

We write d|_n if d is an infinitary divisor of n.
A more fundamental approach, parallel to what has been done for prime
powers, would be to write, say,

h(n) =maxy,
Plin
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and to define d to be an infinitary divisor of n if d| h(my—11 - It could then be
shown that d| n for any k > h(n) — 1 and after some work we would obtain
the result assumed by Definition 3. Conversely, the results just alluded to can
be shown to be a consequence of our definition.

4. FUNCTIONS OF INFINITARY DIVISORS

We denote the number of infinitary divisors of n by t_(n) and their sum
by o (n). Essentially the same discussion as that for the example following
Theorem 11 gives us

Theorem 13. Let y =3y, 2. Then
) =227 o ) =] (1 +,,2’),
y,=1

Proof. Suppose 2° <y < 2°*'. Then, by Theorem 10,

y—2° y—2°
).

- 24
T (0) =21, ("), o (W) =0 (0" )+ o (p
Applying the same argument to the infinitary divisors of p’ -2 , and repeating
it as often as necessary, gives the theorem. 0O

This theorem in fact gives a direct means of finding the infinitary divisors of
p” . For example, since 150 = 128 + 16 + 4 + 2, we have

150 16 128
) )

).
The terms in the sum, after the product on the right is multiplied out, are the
infinitary divisors of p150 .

The functions 7 and o_ are easily seen to be multiplicative, so general ex-

pressions for 7_(n) and o_ (n) may be written down with the aid of Theorem
13.

o (0" =(1+p)1+pH(1+p) 1 +p

5. INFINITARY PERFECT AND MULTIPERFECT NUMBERS

We define an integer n to be infinitary perfect if ¢_(n) = 2n and infinitary
multiperfect if o__(n) = sn for some s > 2.

It is apparent from Theorem 13 that for values of » which are not, to take the

extreme case, products of powers of primes of the form p2 , there is generally
a rich algebraic factorization of ¢__(n), so that more freedom is to be expected
in searching for infinitary perfect numbers than is the case for k-ary perfect
numbers for particular (small) k. (We say »n is k-ary perfect if the sum of all
k-ary divisors of n is 2n.) The only biunitary perfect numbers are 6, 60, and
90 (Wall [15]) and only five unitary perfect numbers are known (Wall [16]).
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Without too intensive a search, we have found the following infinitary perfect
numbers:

2.3, 2%3*5°7%13. 17 41,

2.3%, 2°3%5.11.43.257,

2°3.5, 2'%3%5%7.11.13.43.257,
2%3%5.17, 2'%3*5°7%11.13.41.43. 257,
2°3*7.17.41, 2"3%7.11.17-41-43.257,

23%5%7.13.17, 273%5.7.11.17-41.43.257,

283%5.7.17.41, 273%5*7%11.13.17-41.43.257.
Assuming the validity of the comments following the statement of Definition
3, it will be observed, for example, that the last of the above numbers is k-ary

perfect for all £k > 11.
The next thirteen numbers satisfy o (n) = 3n:

2’3.5, 2''3*5%7%11.13.41.43.257,
2°3’5.17, 23°7.11.17-41-43.257,
273%5%7.13.17, 23%5.7.11.17-41-43.257,
2'3%5.7.17. 41, 23%5%7%11.13.17-41.43. 257,
273*5*7%13. 17 41, 2M3°5.7.11-17-41-43.257,
2°3°5.11-43.257, 2M3°5%7%11.13.17-41-43.257.

2'3%5%7.11.13-43.257,

The next seven numbers satisfy o (n) =4n:

2'3%5%7.13.17, 2'3°5%7%11.13.41.43.257,
2'3°5.7.17.41, 2%375.7.11-17-41-43.257,
2'3°5°7%13.17. 41, 213375%7%11.13.17- 41 43.257.

2"'3°5%7.11-13.43.257,
The next two numbers satisty g__(n) = 5n:

2°375.7.11-17-41-43.257, 2"375°7°11-13.17.41.43.257.

There is no prize for finding further examples of infinitary multiperfect num-
bers. The above examples are all even: a simple adjustment of the proof of The-
orem 1 in Hagis [6] shows that there are no odd infinitary multiperfect numbers.
We conjecture further that there are no infinitary multiperfect numbers not di-
visible by 3.

It is not difficult to devise methods of generating new infinitary multiperfect
numbers from known ones. The following are two results in this direction.
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Theorem 14. Suppose o_(n) = qn, where q is prime, and that q2“||n , for some
a. Then a_(qn) = (q+ 1)qn.

Proof. Using Theorem 13 and the multiplicativity of o_ , we have

utam) = 0., (7 25 ) = @+ Dofa™0u, ()

=(q+ 1o (n)=(q+1)gn,
as required. O
For example, given that n = 2632527.13.17 is infinitary perfect (it appears

in the first list above), we immediately expect to find 2#n in the second list and
6n in the third list, as is the case.

Theorem 15. Suppose o_(n) = sn, and that | and m satisfy

lo(

Then o (mn/l) =s(mn/l).
Proof. We have

m)=mo_(l), l|n, (m,n/l)=1.

mn n o_(m) m mn
e () = otz (7) = T2 0lr) = Tt =77 O
Numbers / and m to satisfy the conditions of this theorem may be obtained
as follows. Suppose o (u) = tu and o_(v) = tv for some ¢, and that ufv.
Set w = (u,v),;, [ =u/w, m=v/w. Since w is a unitary divisor of u, we
have (w, u/w) = 1; thatis, (/, w)=1 and similarly (m, w)=1. Then

I u_ o (w o (lw) o)
m)’

m v o (v) o_(mw) o

ool

If there is some number n with o_(n) = sn, l||n, and (m, n/l) = 1, then
Theorem 15 implies that mn/! is also infinitary multiperfect.

For example, the infinitary perfect numbers 263%5.7.17-41 and 2°3*5°7°.
13.-17-41 may be taken as u and v. Then w = 263417~41, l=5-7,
and m = 5°7°13. In the above lists, there are seven later occurrences of in-
finitary multiperfect numbers »n such that /||# and (m, n/l/) =1, and conse-
quently there are seven corresponding infinitary multiperfect numbers mn/l =
5°7-13-n.

Despite the apparent ease of finding infinitary multiperfect numbers, it seems
to be difficult to show that all such numbers of a desired shape have been found.
We do not know, for example, if there are any infinitary perfect numbers divis-
ible by 8 but not 16. We can, however, prove

Theorem 16. The only infinitary perfect numbers not divisible by 8 are 6, 60, and
90.

Proof. Let n be an infinitary perfect number. If n =2m and m is odd, then
the proof that » = 6 or 90 is similar to what follows, but easier, and is omitted.
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Suppose n = 4m , with m odd. Since o is multiplicative and o (n) = 2n,
we have

(1) 50, (m) =8m.

Then 5|m and 8||g_ (m). The latter implies, by Theorem 13, that m can have
at most three distinct prime factors. There are thus three possibilities for the
shape of m , and we consider them in turn.

Case 1: m = 5. From (1), o_(5") = 8- 57!, Since the left-hand side is
not divisible by 5, we must have a = 1. But then we have no solution.

Case 2: m = 5“qb, where g is a prime, not 2 or 5. By Theorem 13, (1)
must take one of the following forms:

2) “+1)@" +1)=8-5""¢", ab>1,

3 +DE+1E +1)=8-5"¢",  ax1,d>c>1,
4) (5C+1)(5d+1)(qb+1)=8-56+d_1qb, b>1, d>c>1.

If (2) holds, then 5° +¢° +1=3-5""4%, and so, since a> 1,

a
b 5%+1 <3

=351 1=

Then qb =3 and, from (2), a = 1. We thus obtain the solution n =2%3.5=
60, and this is the only solution to arise this way.

Suppose (3) holds. Neither ¢° + 1 nor qd + 1 can be divisible by 4, since
the right-hand side of (3) is not divisible by 16, so we must have ¢° > 9 and

g% >81. Then

a—1 c d
e bR TP
q 9 49 gq
<1 + l + i + L —_ @
- 9 81 729 729°
This is a contradiction.
Next, suppose (4) holds. Then qb + 1 cannot be divisible by 4, so qb >9.
In that case,

9 @ G+ +1 s 11 1
— < = = = B T T,
05711 g5 s\ tEttw
5 111 39
< = -4 —= 4 — ]| = —
—8<1+5+25+125> 50°

which is a contradiction.
Case 3: m = S“qbr‘ , where ¢ and r are distinct primes, not 2 or 5. Now
(1) takes the form

(5) (5*+ 1)@ + D +1)=8-57"¢"~.
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Neither qb + 1 nor r“ + 1 can be divisible by 4, so we may take qb > 9 and
r* > 13. Then
4 8.5 @+ D0 +1 1 11
a8 =(Q+Z(r+)=1+_b+_c+b
3 5+ 1 q r¢ q r q r¢
1 1 1 140
<l od st e = o
R R R TTARSTY,
This is a contradiction.
With the comment above that all infinitary multiperfect numbers are even,
the proof is now complete. 0O

6. INFINITARY AMICABLE PAIRS AND ALIQUOT CYCLES

We call two integers m and n infinitary amicable if o_(m) = m+n =
o (n). A more general notion is that of an infinitary aliquot sequence {n j}j°.°;0 :
given the “leader” n,, we define n, for j > 1, by n,= aoo(nj—l) -n,_;. An
infinitary aliquot cycle of order r is a subsequence n, , 1, ,, ..., #;,,_, with
the property that n, . = n,. Such cycles of order 1 are infinitary perfect
numbers, and cycles of order 2 are infinitary amicable pairs.

A computer run, in which each integer less than 10% was considered in turn
as leader, found 62 infinitary amicable pairs, eight infinitary aliquot cycles of
order 4, three of order 6, and one of order 11. These are all given below. In this
search, there were 36172 infinitary aliquot sequences whose eventual behavior
was unknown in that a term of the sequence exceeded the imposed bound of
9.10". Of the remaining sequences, many terminated in cycles with smallest
member greater than 10® . There was no systematic search for these, so they are
not listed, but the longest observed infinitary aliquot cycle was of order 23 and
had smallest member 12647808. The computations showed that there are no
other cycles of order less than 17 which have smallest member less than 10°.

Most of the theorems of Hagis [4, 6] concerned with the corresponding no-
tions for unitary and biunitary divisors may be easily adjusted to apply also
to infinitary divisors. These give means of obtaining new amicable pairs and
aliquot cycles from known ones. A survey of the extensive literature on the
corresponding topic for ordinary and unitary divisors will be found in Guy [3].

The following is a list of all infinitary amicable pairs with smaller member
less than 10°:

114=2-3-19 126 =2-3%7
594 =2.311 846 = 2.3%47
1140 = 2°3-5-19 1260 = 2°3%5-7
4320 = 2°3’5 7920 = 2*3%5 - 11
5940 = 2°3%5. 11 8460 = 2°3°5.47
8640 = 2°3°5 11760 = 2*3.5.7°

10744 = 2%17-79 10856 = 2°23.59
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12285 =35.7.13
13500 = 2°3°5°

25728 =2'3.67
35712 = 273°31

44772 =2%3.7.13- 41
60858 = 2 - 3°7°23
62100 = 2°3%5%23
67095 = 3°5.7.71
67158 = 2-3°7-13- 41
74784 = 2°3.19 - 41
79296 = 2%3.7.59
79650 = 2 - 3°5759
79750 = 2-5°11-29
86400 = 273°5?
92960 = 2°5.7-83
118500 = 2°3.5%79
118944 = 2°3%7.59
142310 =2-5-7-19-107
143808 = 2°3.7.107
177750 = 2. 3°5>79
185368 = 2°17.29 . 47
204512 =2°7.11-83
215712 = 2°3%7. 107
298188 = 2°3°11 - 251
308220 = 2°3.5.11-467
356408 = 2°13-23-149
377784 = 2°3*11.53
420640 = 2°5-11-239
462330 = 2-3%5.11-467
476160 = 2'°3.5.31
482720 = 2°5.7.431
487296 = 2'3%47

14595 =3-5-7-139
17700 = 2°3-5%59
43632 = 2*3%101
45888 = 2°3.239
49308 = 2°3-7-587
83142 = 2-3%31-149
62700 = 2°3-5°11-19
71145 = 3°5.17- 31
73962 = 2-3°7.587
96576 = 2°3. 503
83904 = 2°3.19.23
107550 = 2 - 3°5°239
88730 =2-5-19-467
178800 = 2*3 - 57149
112672 = 2°7- 503
131100 = 2°3-5%19-23
125856 = 2°3°19 - 23
168730 = 2-5-47-359
149952 = 2°3.11.71
196650 = 2 -3°5°19.23

203432 = 2°59 - 431

206752 = 2°7-13-71

224928 = 2°3%11 - 71

306612 = 2°3°17 - 167

365700 = 2°3-5%23- 53

399592 = 2°199 - 251

419256 = 2°3%647

460640 = 2°5 - 2879

548550 = 2. 3°5°23 - 53

510720 = 2%3-5-7-19

574816 = 2°11-23- 71

516384 = 2°3%11- 163

409
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545238 = 2.3°23.439
576882 = 2.3°1187
600392 = 2*13.23.251
608580 = 2°3%5.7%23
609928 = 2°11-29.239
624184 = 2°11-41-173
635624 = 2°11-31-233
643336 = 2°29.47.59
643776 = 2°3.7.479
669900 = 2°3.5%7.11-29
671580 = 223%5.7.13- 41
726104 = 2*17-19 - 281
784224 = 2°3%7. 389
785148 = 2°3.7.13-719
796500 = 2%3%5359
815100 = 2°3.5%11-13-19

721962 = 2.3%19.2111
592110 =2-3%5.17.43
669688 = 297 . 863
831420 = 2°3%5.31. 149
686072 = 2°191 - 449
691256 = 2°71-1217
712216 = 2°127- 701
652664 = 2°17 - 4799
661824 = 2°3°383
827700 = 2°3.5%31.89
739620 = 2°3%5.7. 587
796696 = 2°53 . 1879
806976 = 2°3%467
827652 =2°3.7.59.167
1075500 = 2°3°5°239
932100 = 2°3.5%13.239

1339840 = 2°5.53.79
980984 = 2°47.2609
1072800 = 2°3%5%149
1125765 = 3°5-31-269
1147200 = 2°3. 57239
1137402 =2-3%7.17.59
1043096 = 2°23 - 5669

A scanning of this list suggests that it would be interesting to investigate why
the two members of an infinitary amicable pair often have such similar prime
factorizations. The analogues of the theorems in Hagis [6] and the methods of
te Riele [14] go part of the way in explaining this.

;[‘he eight infinitary aliquot cycles of order 4 with smallest member less than
10° are:

863360 =275.19.71
898216 = 2°11-59-173
916200 = 2°325%509
947835 = 3°5.7.17-.59
974400 = 2°3.5%7.29
988038 = 2-3°19. 107
998104 = 2°17-41-179

(1026, 1374, 1386, 1494),

(10098, 15822, 19458, 15102)
(10260, 13740, 13860, 14940)
(41800, 51800, 66760, 83540)
(45696, 101184, 94656, 88944

b

b

)7
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(100980, 158220, 194580, 151020),
(241824, 321216, 331584, 313056),
(685440, 1517760, 1419840, 1334160).
The three of order 6 are:
(12420, 16380, 17220, 23100, 26820, 18180),
(512946, 869454, 891906, 933918, 933930, 769374),
(830568, 1245912, 1868928, 3288192, 5447088, 1076832).
Finally, the only other infinitary aliquot cycle of order less than 17 with least
member less than 10° is:
(448800, 696864, 1124448, 1651584, 3636096, 6608784,
5729136, 3736464, 2187696, 1572432, 895152).
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