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ON AN INTEGER'S INFINITARY DIVISORS 

GRAEME L. COHEN 

ABSTRACT. The notions of unitary divisor and biunitary divisor are extended 
in a natural fashion to give k-ary divisors, for any natural number k. We 
show that we may sensibly allow k to increase indefinitely, and this leads to 
infinitary divisors. The infinitary divisors of an integer are described in full, 
and applications to the obvious analogues of the classical perfect and amicable 
numbers and aliquot sequences are given. 

1. INTRODUCTION 

A divisor d of a natural number n is unitary if the greatest common divisor 
of d and n/d is 1, and is biunitary if the greatest common unitary divisor of 
d and n/d is 1. Unitary and biunitary divisors have been studied by several 
authors, often in terms analogous to those of the classical perfect and amicable 
numbers. Among these writers are E. Cohen [2], Hagis [4-6], Lal [7], Subbarao 
and Warren [9], Suryanarayana [1 1] (see also [12]) and Wall [15, 16]. 

It is easily seen that, for a prime power py , the unitary divisors are 1 and 
pY, and the biunitary divisors are all the powers 1, p, p2, pYexcept for 
py/2 when y is even. 

There is no difficulty in extending this notion. Thus we may call d a tri- 
unitary divisor of n if the greatest common biunitary divisor of d and n/d 
is 1. We soon calculate that the triunitary divisors of py are 1 and py , except 
if y=3 or6;thoseof p3 are 1, p, p2 ,and p3 ;andthoseof p6 are 1, p2, 

p4 and p 6. In this way, we may also define 4-ary divisors, 5-ary divisors, and 
so on. We shall speak in general of k-ary divisors. The lack of a pattern in the 
list of k-ary divisors of py (for small values of k, not 1 or 2, and y ) would 
have inhibited a study of these. But as we increase k, in fact a very striking 
pattern begins to appear. 

Figure 1 shows the k-ary divisors of py for k = 1, 2, ..., 6, and 0<y < 
30. The asterisks indicate those values of x for which pv is a k-ary divisor 
of p"'. Figure 2 is the same for k = 19 and 20, and 0 < y < 80. We notice 
that for small values of y, to be characterized later, the k-ary divisors remain 
fixed. The pattern for large y is also fixed, and depends on whether k is odd or 
even. Finally, in Figure 3, we show the 1 00-ary divisors of py for 0 < y < 120. 
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The pattern of divisors for the small values of y would now appear to be 
established, whatever the value of k, and it is these which we shall be calling 
infinitary divisors. Note that the figure shows some collapse in the pattern for 
y > 100. The last (decimal) digit of x, where px is a 100-ary divisor of py, 
is shown in this figure, so that the actual divisors may be read off; this will be 
useful later. 

The pattern indicated by Figure 3 has the distinct appearance of a fractal. It 
may be compared with Sierpiniski's "arrowhead" or "gasket" (Mandelbrot [8]). 
See also Sved [13], where the same fractal appears, also in a number-theoretic 
setting. 

The pictures would appear to be worth a thousand words. The first aim of 
this paper is to describe this unexpected pattern in terms of our definition of 
k-ary divisors. 

2. INFINITARY DIVISORS OF PRIME POWERS 

In the following, all letters denote nonnegative integers, with p reserved for 
an arbitrary prime. To put the above on a formal footing, we begin with 

Definition 1. A divisor d of an integer n is called a 1 -ary divisor of n if the 
greatest common divisor of d and n/d is 1; and d is called a k-ary divisor 
of n (for k > 2) if the greatest common (k - 1)-ary divisor of d and n/d 
is 1. 

For convenience, we shall call d a O-ary divisor of n if d n. We write 
dIkn to indicate that d is a k-ary divisor of n, and (1, m)k for the greatest 
common k-ary divisor of / and m. It has become common to write djln in 
place of dlln. 

It should be mentioned that different generalizations of unitary divisor have 
been given by Suryanarayana [10] (who also used the term "k-ary divisor") and 
Alladi [1]. 

The following observations are immediate and will be used later without 
special reference. 

(i) For any n, lUkn. 

(ii) pX kpY means (PX VYX)k 1 = 1P. 
(iii) pX kpY if and only if py-xkpy. 

The permanency of the pattern for the early k-ary divisors of py , described 
in ? 1, is accounted for in 

Theorem 1. For k > y - ? > 0, pxlkpY if and only if plylpY. 

Proof. The proof is by induction. The result is true when y = 1, since 1 kP 
for all k. We suppose now that it is true for y < Y - 1, and consider y = Y. 
For k = Y - 1, there is nothing to prove, so we suppose also that the result is 
true for Y - 1 < k < K - I, and consider k = K. 

Suppose px Kp Y. We must show that px|j1 Yp. If this is not true, then 

1< x < Y - 1 and (px, pYX)Y2 =pa, a > 1. Since p IY-2Px the induc- 

tion hypotheses show first that Pa x_ lpxand then that Pa K- Px Similarly, 
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Y-x and Y - x < Y - 1, so Paly_x_p Y-x, and then Pa IK1P Y-X 

Hence (pX PYX)K 1 pa > 1, contradicting px1KPY . Hence, px1 _1p pY, as 
required. 

Suppose next that pxly _pY. We must show that px IKP* If this is not 

true, then x < Y - 1 and (Px ,P Y-X)K-1 = pb, b > 1. Then pbIK-jPx x 

and the induction hypotheses give pb Kx PX and then pb Y-2Px Similarly, 

Pb Y-2PY Y-x and we are contradicting px I. p . The proof is complete. El 

We are justified now in making the following 

Definition 2. We call px an infinitary divisor of p' (y > 0) if pxly_1py. We 
also define 1 to be an infinitary divisor of 1. 

We write pX I pY when px is an infinitary divisor of py (and px { pY 
when it is not), and (p', P'). for the greatest common infinitary divisor of p' 
and PJ. 

Theorem 2. We have pxIcpy if and only if (px, py'X) = 1. 

Proof. This is trivially true if y = 0 or 1, and generally if x = 0 or x = y, 
so assume now that y > 2 and that 1 < x < y - 1 . Then x - 1 < y - 2 and 

y-x I 2. If px tp p then px Y_lS (P p P )y-2 P 

Then Pa ly-2PX so that, by Theorem 1, Palx lPX; similarly, pa1y xYlpY-x 

But then Pal x and pa pY-x ,so (px py-x) > pa > 1 . For the converse, 

we assume that (px, pyX )00 = pb > 1 and essentially reverse the preceding 
argument. El 

The theorems and corollaries which follow will lead to the complete charac- 
terization of the infinitary divisors of py . The pattern of Figure 3 (excluding 
the top nineteen lines) will thus be fully described, although the characterization 
we end with, in Theorem 8, will lead to a more efficient means of constructing 
tables of infinitary divisors. 

Theorem 3. We have P I py if and only if y is odd. 

Proof. Using Definition 2, we have pK1p and p { 0p2 . Also, using Theorem 
2, we have, for y > 3, 

P I oPY (p py2- 0 = Pt <, 
y tA-l 

( (P Y-2) P PI -2. 

The result follows. El 

Theorem 4. If y is even and px I p then x is even. 

Proof. Suppose x is odd. Then y - x is also odd and, using Theorem 3, 
(px, pyAx). > p. This contradicts the statement that P'2 KP1. a 

Theorem 5. We have px I p" if and only if P2x1.P2J . 
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Proof. We use induction on y. The result is trivially true if y = 0. Suppose 
the theorem is true for y < Y - 1 and consider y = Y. Clearly, we may 
assume 1 < x < Y- 1. 

Suppose px I p , but p2x J p2Y The latter implies that (p2x p2Y 2x) = 

pa , say, and, using Theorem 4, a is even and positive. Put a = 2b. Since 

p2bI "P2x and p2b K" 2Y 2x, the induction hypothesis implies that pb Kpx and 

pbl pY- .Then (TX, pY-x)o p > 1, contradicting the assumption that 

pXI OPY 

Suppose next that px{t p . Then (px, pYx) C> 1 f 

by hypothesis, p 
2c 

,p2x and p2cI p2Y-2x . It follows that p2{ top . This 

completes the proof for y = Y, and thus for all y. o 

Theorem 6. If pXl1Y and y is divisible by 2i for some j > 0, then x is 
divisible by 2J . 

Proof. The result is trivial when j = 0. Suppose it is true when j = J, and 

consider j = J + I . Put y = 2J+' a. By Theorem 4, x is even, say x = 2w. 

Then p I |oop2 a, so that, by Theorem 5, pU Ip2 a. Then, by the induction 

hypothesis, w is divisible by 2J, and the result follows. o 

o 2a 2a Corollary 1. The infinitary divisors of p are 1 and p 

Proof. This is immediate. o 
C112 For _ 1 

~~2' ~2'?k 
1<k<j1 

2' 2'?+k 
Corollary 2. For < k < 2i, 

p 
;for 21 < k < 2j+' , Cp2 

Proof. The first statement follows from Corollary 1 since, for these k, 

(p2 , Pk). = 1 . The second statement follows from the first. o 

Theorem 7. We have p2 IOOPY if and only if y_ 2 or 2J + 1 or 2J + 2 or 
or 2j+1 -1 (mod 2j1?). 

Proof. We have 

p K" 1 (p ,p )P-2j) 
2 p 

0p-2 (by Corollary 1) 

(p2j ,p -2j+1) > 1 > p2 p 
Y-2j 

(by Corollary 1) 

..# . 2j 
opj-2j+llI 

where / is chosen to be the largest integer such that y - 2J+1l > 2J. Then 

2J < y - 2j+'l < 2J + 21+1, and the result follows from Corollary 2. o 

The remainder of the identification process for infinitary divisors is carried 

out mainly in terms of the binary representations of the exponents on the prime 

p. We write a binary representation in general fashion as E qJ 2J; the sum is 

finite, j > 0, each qj is 0 or 1, and trailing zeros are allowed where required. 

A little reflection gives us the following alternative statement of Theorem 7. 
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Theorem 7'. Let y = Eyj2'. Then p2 IOpy if and only if yj = . 

Theorem 8. Let x = Z xj 2' and y - x = E zz 2'. Then 

pX |11,,Y if and only if E XZzj = O. 

Proof. Suppose first that Z x zj 54 0. Then x; = z= 1 for some j, so 

p2 loop and p2 I OPY , by Theorem 7. Hence (px,pY X)" > p2 > p, So 
pi 'p an 

For the converse, suppose pX t 0p Y, so that (px, py-x))o = pa, say, with 
a> 1. Put 

a = a 12J, x - a = Z b 2, y -x - a = cJ2'. 

Since a > 1, we have ai = 1 for some i. Since P we have Eaib1 = 0 
(using the part of this theorem already proved) and it follows that bi = 0 
and that xi = a1 + b. for each j. Hence xi = 1. Similarly, PalIpYX, SO 

Zajc, = O ,from which ci = O and zi = ai + ci = 1. Thus E xjzj 54 0$ . o 

2a_ a1 
Corollary 3. The infinitary divisors of p are all px, 0 < x < 2a _ 1. 

Proof. Taking y = 2a _ 1 in Theorem 8, we see there that if x; = 0 or 1, then 

zi = 1 or 0, respectively, and E xi z1 = 0 . El 

In the next theorem, we prove a very pleasing and useful property, namely, 
that infinitary divisors are transitive. This is not true of k-ary divisors in 
general. For example, P15P3 and p3 15iP, but P t 5P7. 

Theorem 9. If px I pY and P IP then Px IooPz 

Proof. The result is trivial if x = 0, so suppose x > 1. Write x = xi 2j, 

y = Ey2j, y-x = Er12j, z-y = Esj2j, and z-x = Et12j. Wemust 
showthat Exjtj=O, giventhat Exjrj=O and Zyjsj =0. Consider any 
particular value of j, say j = k, for which Xk = 1 . Since Z xir, = 0, we 
then have rk = O and yj = xj + r for each i, so Yk = . Then Sk =O We 
note that z -x = (z -y) + (y -x). If k = 0, then to =so+ro = 0. If k > 0, 
then tk = Sk + rk unless s, = r, = 1 for some i < k. In that case, y, = 0, 
since Zyjsj = 0, and we cannot have yi = xi + r, . Hence tk = Sk+ rk = 0, so 

xit, = 0 for all j, and the proof is finished. L 

Theorem 10. Suppose 2a < y < 2"+' If p I pY-2, then pxlAp and 

p2 +l j00pY; if x < y-2a and px p Y, then pxlopY-2 
a ~ + Proof. Assume p XlIpy 2 . Since 2a < y < 2 a+, Theorem 7' implies that 

p2a Ip3', so p I pY and so pjloop , by Theorem 9. 

Now put x = Zxi2j and y-22-x = Zz,2'. We have x <y-2 < 

2a+, - 2a = 2a and 2a < 2a +x < 2a+, so 2a + x has the proper binary 
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representation 2a + E 2j . By Theorem 8, > xzj z= 0 , and so, by the same 

theorem, P 2 Pa+ 

For the second part, suppose px t pY2 , and let x and y - 2- x be as 
before. Then xj = zj = 0 for 1 > a and Xk = Zk = 1 for some k < a (by 

Theorem 8). But then y - x = 2a + E Z,2J and the right-hand side is a proper 
binary representation; since Xk = Zk = 1, we have px t py as required. E 

Theorem 11. If 2a < y < 2al and y - 2a < X < 2a, then px , pY 

Proof. Since y - 2a < x < 2a, we also have y - 2a < y - x < 2a . Then, putting 
x = Exj2J and y - x = E zj2j, we may assume in each sum that j < a - I . 
Put also y = Eyj2j . If xjzj = 0 for all j, then yj = x; + zj for all j, and 
it is impossible to have Ya = 1, which we require since 2a ? y < 2a+1 Hence 

Xi = Z = 1 for some j, implying, by Theorem 8, that px py . u 

Theorems 10 and 11 imply the "arrowhead" of Figure 3. In particular, The- 
orem 11 accounts for the large empty triangles. 

We can use Theorem 10 to find the infinitary divisors of prime powers very 
quickly (that is, in polynomial time). For example, the infinitary divisors of p 50 
are the infinitary divisors px of p 50-28, i.e., p22 , and each p 128+x.Use Fig- 
ure 3 for the infinitary divisors of p22 or calculate them from those of p 22-16 

i.e., p6. The infinitary divisors of p are px for x = 0, 2, 4, 6; so those of 
p22 have x = 0, 2, 4, 6, 16, 18, 20, 22. Then the infinitary divisors of p150 
are px for x = 0, 2,4, 6, 16, 18, 20, 22, 128, 130, 132, 134, 144, 146, 
148, 150. 

The simplest means of constructing the Sierpiniski arrowhead is by means of 
Pascal's triangle, where only the parity of the binomial coefficients need be noted 
(Sved [13]). This gives immediately the following unexpected characterization 
of infinitary divisors. 

Theorem 12. We have px I py if and only if (Y) is odd. 

3. INFINITARY DIVISORS OF INTEGERS 

The simplest and quickest way to introduce infinitary divisors in general is 
as follows. 

Definition 3. Let d be a divisor of n and write n = Hl>=1 PJ, for distinct 
primes P, p2, I *. *p , and d = H>1pjJ (where 0 < xJ < Yj, j = 1, 

2, ..., t). Then d is an infinitary divisor of n if Pj IOOP>J for each j = 

1,2, ... ,t. 

We write dI n if d is an infinitary divisor of n. 
A more fundamental approach, parallel to what has been done for prime 

powers, would be to write, say, 

h(n) = maxy, 
pYlin 
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and to define d to be an infinitary divisor of n if dkh(n)- n . It could then be 
shown that dlkn for any k > h(n) - 1 and after some work we would obtain 
the result assumed by Definition 3. Conversely, the results just alluded to can 
be shown to be a consequence of our definition. 

4. FUNCTIONS OF INFINITARY DIVISORS 

We denote the number of infinitary divisors of n by Tr.(n) and their sum 
by a. (n). Essentially the same discussion as that for the example following 
Theorem 11 gives us 

Theorem 13. Let y = a yJ 2J . Then 

T(pY) = 2EYJ, C(PY) = u (i + p2 ) 

yJl 

Proof. Suppose 2a < y < 2a+1 . Then, by Theorem 10, 

y-2a () y-2 a 
2a Y-2a 

T"(pY) = 2Tr(pY ) ~ (Y)=a"(P )+p a0(p ) 

Applying the same argument to the infinitary divisors of pY-2, and repeating 
it as often as necessary, gives the theorem. E 

This theorem in fact gives a direct means of finding the infinitary divisors of 
pY. For example, since 150 = 128 + 16 + 4 + 2, we have 

ao (P ) = (1 +p)2(1 +p4)(1 +p16)(1 +p 28). 

The terms in the sum, after the product on the right is multiplied out, are the 
. . ~~150 

infinitary divisors of p 
The functions -OO and a., are easily seen to be multiplicative, so general ex- 

pressions for -r. (n) and a. (n) may be written down with the aid of Theorem 
13. 

5. INFINITARY PERFECT AND MULTIPERFECT NUMBERS 

We define an integer n to be infinitary perfect if a. (n) = 2n and infinitary 
multiperfect if a. (n) = sn for some s > 2. 

It is apparent from Theorem 13 that for values of n which are not, to take the 
2a extreme case, products of powers of primes of the form p , there is generally 

a rich algebraic factorization of a. (n), so that more freedom is to be expected 
in searching for infinitary perfect numbers than is the case for k-ary perfect 
numbers for particular (small) k. (We say n is k-ary perfect if the sum of all 
k-ary divisors of n is 2n.) The only biunitary perfect numbers are 6, 60, and 
90 (Wall [15]) and only five unitary perfect numbers are known (Wall [16]). 
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Without too intensive a search, we have found the following infinitary perfect 
numbers: 

2.3, 26345 37213 .17. 41, 

2.325, 28335 511 43 .257, 

223.5 2 1032527 711 13. 43 .257, 

2433517, 2 1345 37211 13 41 43 .257, 

2534717. 41, 2 2357 11 .17. 41 . 43 .257, 

2632527 7 13 17, 2 2365 7 11 17.41.43.257, 

26345.7.17.41, 2 236537 211 13 17.41.43.257. 
Assuming the validity of the comments following the statement of Definition 

3, it will be observed, for example, that the last of the above numbers is k-ary 
perfect for all k > 11. 

The next thirteen numbers satisfy a. (n) = 3n: 

233.5, 21134537211.13.41.43.257, 

2 5335-17, 2 13357-11-17-41-43-257, 

2732527.13.17, 213365.7.11.17.41.43.257 

2 7345.717.41, 213365372 11-13-17-41.43.257, 

2734537213.17.41, 214355.7-11-17.41.43.257, 

2 93 3511-43-257, 21435537211 13-17-41-43-257. 

2 32527 11 13-43-257, 

The next seven numbers satisfy a. (n) = 4n: 

2733527.13.17, 21135537211.13.41.43.257, 

27355.7 17.41, 213375.7.11.17.41.43.257 

2735537213.17.41, 2 337537211 13 17 41 43.257. 

2 33527 11 13 43.257, 

The next two numbers satisty a. (n) = 5n: 

2 537 5 7 11 17.41.43.257, 2 537537211 13.17.41.43.257. 
There is no prize for finding further examples of infinitary multiperfect num- 

bers. The above examples are all even: a simple adjustment of the proof of The- 
orem 1 in Hagis [6] shows that there are no odd infinitary multiperfect numbers. 
We conjecture further that there are no infinitary multiperfect numbers not di- 
visible by 3. 

It is not difficult to devise methods of generating new infinitary multiperfect 
numbers from known ones. The following are two results in this direction. 
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Theorem 14. Suppose a. (n) = qn, where q is prime, and that q2a 11 n, for some 
a. Then ao(qn) = (q + l)qn. 
Proof. Using Theorem 13 and the multiplicativity of aOO, we have 

2a?1 n 2a (n 
J (qqn) = -c, q a )= (q + l)u (q )c (2aJ 

= (q + 1)a5(n) = (q + 1)qn, 

as required. E 

For example, given that n = 2 63 2527 13. 17 is infinitary perfect (it appears 
in the first list above), we immediately expect to find 2n in the second list and 
6n in the third list, as is the case. 

Theorem 15. Suppose a. (n) = sn, and that I and m satisfy 

la.(m) = ma.(i), 11in, (m, n/l) = 1. 

Then aui(mn/l) = s(mn/l). 

Proof. We have 

aTo I 0 )=O(M)5O( a U.)t (n) = -aO (n) =S El [ 

Numbers I and m to satisfy the conditions of this theorem may be obtained 
as follows. Suppose a.(u) = tu and a.(v) = tv for some t, and that ujv. 
Set w = (u, v)1, I = u/w, m = v/w. Since w is a unitary divisor of u, we 
have (w, u/w) = 1; that is, (1, w) =1 and similarly (m, w) = 1. Then 

I _ u a o (u) -a. (iw) - o(l) 
m v a00(v) a. (mw) -00(m) 

If there is some number n with a.(n) = sn, 11n, and (m, n/l) = 1, then 
Theorem 15 implies that mn/l is also infinitary multiperfect. 

6 4 6 43 2 For example, the infinitary perfect numbers 2 3 5 *7 17 .41 and 2 3 5 7 
13 . 17 . 41 may be taken as u and v . Then w = 263417* 41, I = 5 . 7, 
and m = 5 37213. In the above lists, there are seven later occurrences of in- 
finitary multiperfect numbers n such that IIIn and (mi, n/i) = 1, and conse- 
quently there are seven corresponding infinitary multiperfect numbers mn/l = 

527 .13.n. 
Despite the apparent ease of finding infinitary multiperfect numbers, it seems 

to be difficult to show that all such numbers of a desired shape have been found. 
We do not know, for example, if there are any infinitary perfect numbers divis- 
ible by 8 but not 16. We can, however, prove 

Theorem 16. The only infinitary perfect numbers not divisible by 8 are 6, 60, and 
90. 

Proof. Let n be an infinitary perfect number. If n = 2m and m is odd, then 
the proof that n = 6 or 90 is similar to what follows, but easier, and is omitted. 
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Suppose n = 4m , with m odd. Since a0O is multiplicative and a. (n) = 2n, 
we have 

(1) 5a00(m) = 8m. 

Then 51 m and 8 11a. (m) . The latter implies, by Theorem 13, that m can have 
at most three distinct prime factors. There are thus three possibilities for the 
shape of m, and we consider them in turn. 

Case 1: m = 5a . From (1), soo (5a) = 8. 5 -1 . Since the left-hand side is 
not divisible by 5, we must have a = 1 . But then we have no solution. 

Case 2: m = 5 aqb , where q is a prime, not 2 or 5. By Theorem 13, (1) 
must take one of the following forms: 

(2) (5 +l)(q +J1)=8 5alqb ab > 1, 
(3) ((5a +l)(qc+ l)(qd+ l)= 8.5a lq , a> 1, d> c?1, 

d Ib c~d-1I 
(4) (5c+ 1)(5 +l)(q + 1)= 8. 5 q 

, b> 1, d>c> 1. 

If (2) holds, then 5a + qb + I = 3 - 5a-, qb, and so, since a > 1, 

b 5a+ I 
q < 

335a-l 1?3. 

Then qb = 3 and, from (2), a = 1. We thus obtain the solution n = 22 3 5 = 

60, and this is the only solution to arise this way. 
Suppose (3) holds. Neither qc + 1 nor qd + 1 can be divisible by 4, since 

the right-hand side of (3) is not divisible by 16, so we must have qc > 9 and 
qd >81.Then 

4 8. 5 
1 

(qc + l)(qd + 1) _ 
1 1 1 

3 - 5a + I qc+d l dy+ q+c+d 

1 1 1 820 
9 81 729 729' 

This is a contradiction. 
Next, suppose (4) holds. Then qb + 1 cannot be divisible by 4, so qb > 9. 

In that case, 

9 q _ (5 + 1)(5 + 1) _ 5/ 1 1 1 

10 q b+ 1 8 . 5c+d- 1 8 \ 5 d 5~ 

-< 85 +5 + 
K2+5+ 50 

which is a contradiction. 
Case 3: m = 5 aq brC , where q and r are distinct primes, not 2 or 5. Now 

(1) takes the form 

(5) (5a + 1)(q + l)(rc + 1) = 8.5a-1 qbr C 
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Neither qb + 1 nor rc + 1 can be divisible by 4, so we may take qb > 9 and 
rC > 13. Then 

4 8 5a-1 (qb + l)(rc + 1) _ 1+ 1 1 
3 - 5aa + q qbrc r rC bqc 

1 1 1 _ 140 
- 1 + 9 13 117 117' 

This is a contradiction. 
With the comment above that all infinitary multiperfect numbers are even, 

the proof is now complete. E 

6. INFINITARY AMICABLE PAIRS AND ALIQUOT CYCLES 

We call two integers m and n infinitary amicable if a. (m) = m + n = 

aCO(n) . A more general notion is that of an infinitary aliquot sequence _nil?0 

given the "leader" no, we define n1, for j > 1, by n1 = U.(n-11) - nj11 . An 
infinitary aliquot cycle of order r is a subsequence nk' nk+1' ... 5nk+r- with 
the property that nk+r = nk. Such cycles of order 1 are infinitary perfect 
numbers, and cycles of order 2 are infinitary amicable pairs. 

A computer run, in which each integer less than 106 was considered in turn 
as leader, found 62 infinitary amicable pairs, eight infinitary aliquot cycles of 
order 4, three of order 6, and one of order 11. These are all given below. In this 
search, there were 36172 infinitary aliquot sequences whose eventual behavior 
was unknown in that a term of the sequence exceeded the imposed bound of 

12 9. 10 Of the remaining sequences, many terminated in cycles with smallest 
6 member greater than 106. There was no systematic search for these, so they are 

not listed, but the longest observed infinitary aliquot cycle was of order 23 and 
had smallest member 12647808. The computations showed that there are no 
other cycles of order less than 17 which have smallest member less than 106. 

Most of the theorems of Hagis [4, 6] concerned with the corresponding no- 
tions for unitary and biunitary divisors may be easily adjusted to apply also 
to infinitary divisors. These give means of obtaining new amicable pairs and 
aliquot cycles from known ones. A survey of the extensive literature on the 
corresponding topic for ordinary and unitary divisors will be found in Guy [3]. 

The following is a list of all infinitary amicable pairs with smaller member 
less than 106: 

114=2 3*19 126=2 327 

594 = 2 3311 846 = 2 3247 

1140 = 223 3 5 .19 1260 = 22325*7 

4320 = 25335 7920 = 24325.11 

5940 = 22335.11 8460 = 22325*47 
8640 = 26335 11760 = 243*5*72 

10744 = 23 17 79 10856 = 2232 59 
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12285 = 3 35 7 - 13 14595 = 3 - 5 - 7 - 139 

13500 = 223353 17700 = 2 23.5259 

25728 = 273 - 67 43632 = 2433101 

35712 = 273 231 45888 = 263 3 239 

44772 = 223 - 7 13. 41 49308 = 23 2 7 - 587 

60858 = 2 33 
2 

83142 = 2 3231 - 149 

62100= 223 35223 62700 = 223 - 5211 . 19 

67095 = 335 . 7 . 71 71145 = 335 . 17 - 31 

67158 = 2 - 327 - 13. 41 73962 = 2 - 327 . 587 

74784 = 253 19 41 96576 = 263 - 503 

79296 = 263 - 7 - 59 83904 = 263. 19 - 23 

79650 = 2.335259 107550 = 2 - 3252239 

79750 = 2 - 5311 - 29 88730 = 2 - 5 - 19 - 467 

86400 = 273352 178800 = 243 . 52149 

92960 = 2 55 7 - 83 112672 = 257 - 503 

1 l 8500 = 2 235379 131100 = 223 - 5219 - 23 

118944 = 25327 3 59 125856 = 2 53219 23 
142310 = 2 - 5 - 7 * 19 . 107 168730 = 2 - 5 - 47 - 359 

143808 = 263 - 7. 107 149952 = 263 - 11 . 71 

177750 = 2 - 325379 196650 = 2 
S 

325219 
. 
23 

185368 = 2317 - 29 - 47 203432 = 2359 - 431 

204512 = 257 - 11 - 83 206752 = 257 - 13 . 71 

215712 = 25327 7 107 224928 = 253211 . 71 

298188 = 223 311 251 306612 = 23317 . 167 

308220 = 223 - 5 - 11 - 467 365700 = 223 - 5223 . 53 

356408 = 2313 . 23 . 149 399592 = 23199 - 251 

377784 = 233411 . 53 419256 = 2334647 

420640 = 255 - 11 - 239 460640 = 255 - 2879 

462330 = 2 . 325 - 11 . 467 548550 = 2 - 325223 - 53 

476160 = 2103 . 5 . 31 510720 = 283 . 5 . 7 . 19 

482720 = 2 55 7 . 431 574816 = 25 11 23 - 71 

487296 = 273447 516384 = 253211 - 163 
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545238 = 2 . 3323. 439 721962 = 2 . 3219 . 2111 

576882 = 2 . 351187 592110 = 2 3 45 . 17 . 43 

600392 = 2313 . 23 . 251 669688 = 2397 . 863 

608580 = 22335.7223 831420 = 22325 5 31 . 149 

609928 = 2311 . 29 . 239 686072 = 23191 . 449 

624184 = 2311 . 41 . 173 691256 = 2371 . 1217 

635624 = 2311 . 31 . 233 712216 = 23127 .701 

643336 = 2329 . 47 . 59 652664 = 2317 . 4799 

643776 = 263 - 7 . 479 661824 = 2 633383 

669900 = 223 - 527 7 11 . 29 827700 = 223 - 5231 . 89 

671580 = 22325 - 7 . 13. 41 739620 = 22325 - 7 - 587 

726104 = 2317 . 19 . 281 796696 = 2353 . 1879 

784224 = 25327 7 389 806976 = 2633467 
2 2 785148 = 223 . 7 . 13 . 719 827652 - 23. 7 . 59 . 167 

796500 = 22335359 1075500 = 223253239 

815100 = 223.5211 . 13. 19 932100 = 223.5 213-239 

863360 = 275 19 71 1339840 = 265 . 53 . 79 

898216 = 2311 . 59 . 173 980984 = 2347.2609 

916200= 2 33252509 1072800 = 2 53 252149 

947835 = 335 * 7 . 17 . 59 1125765 = 335 . 31 . 269 

974400 = 263*527.29 1147200 = 263.5 2239 

988038 = 2 . 3519.107 1137402 = 2.3 47 . 17 . 59 

998104 = 2317 . 41 . 179 1043096 = 2232 5669 

A scanning of this list suggests that it would be interesting to investigate why 
the two members of an infinitary amicable pair often have such similar prime 
factorizations. The analogues of the theorems in Hagis [6] and the methods of 
te Riele [14] go part of the way in explaining this. 

The eight infinitary aliquot cycles of order 4 with smallest member less than 
10 are: 

(1026, 1374, 1386, 1494), 
(10098, 15822, 19458, 15102), 
(10260, 13740, 13860, 14940), 
(41800, 51800, 66760, 83540), 
(45696, 101184, 94656, 88944), 
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(100980, 158220, 194580, 151020), 

(241824, 321216, 331584, 313056), 

(685440, 1517760, 1419840, 1334160). 

The three of order 6 are: 

(12420, 16380, 17220, 23100, 26820, 18180), 

(512946, 869454, 891906, 933918, 933930, 769374), 
(830568, 1245912, 1868928, 3288192, 5447088, 1076832). 

Finally, the only other infinitary aliquot cycle of order less than 17 with least 
member less than 106 is: 

(448800, 696864, 1124448, 1651584, 3636096, 6608784, 

5729136, 3736464, 2187696, 1572432, 895152). 
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